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Assuming the existence of a complete set of orthonormal radial functions (P&r), 
n = I + l)... }, I = 0, I ,... and an expansion of the exact total wavefunction for a two- 
electron system, it is shown that orthogonal transformations of the radial functions 
exist so that the expression can be reduced from a triple to a double sum. The exact 
form depends on the symmetry of the state. 

A procedure is proposed for solving SchrGdinger’s equation using an MCHF approach 
to the reduced form. Convergence of the process is illustrated for the ls* ‘S, 132s ‘,a$ and 
1~2p’,~P states of He using numerical methods. 

I. INTRODUCTION 

With the work of Pekeris [l, 21 and his co-workers [3] the two-electron problem 
is effectively solved. They have shown that highly accurate solutions of 
Schriidinger’s nonrelativistic equation can be obtained by expanding the wave- 
function if terms of perimetric coordinates, which are linear combinations of rl , r2 , 
and r12 , and solving an equivalent variational problem. Accurate results have been 
computed for most of the observed S and P states of two electron systems with 
atomic number 2 = 2 to 10 [4]. 

The Hartree-Fock (HF) method [S] has been used successfully to provide a 
qualitative description of the atom. Though the accuracy is not anywhere near that 
obtained by Pekeris et al. for the two-electron system, it has the advantage that 
large atoms can be dealt with almost as readily as small ones with the computational 
time of a numerica procedure increasing roughly as the groups of equivalent 
electrons [6]. An improvement upon the HF scheme which retains many of its 
advantages, is the multiconfiguration Hartree-Fock (MCHF) approximation [7, 81. 
In this paper, an MCHF scheme is proposed for solving the two-electron problem 
which reduces the number of configurations that need be considered. It is similar, 
but not identical, to Ldwdin’s [7] natural orbital expansion method and can be 
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extended to systems with more than two electrons. The scheme is applied to ls2 3, 
1~2s 3!3, and ls2p ls3P of Helium using a numerical MCHF approach: the results 
are presented and compared with the “exact” ones. 

II. THE NUMERICAL MCHF APPROACH 

The numerical MCHF approach is best illustrated by means of an example. 
Suppose we wish to approximate the exact total wavefunction # for the ls2 IS state 
by $. The MCHF approach assumes that $ can be expressed as a linear combi- 
nation of wavefunctions for configurations or “configuration state functions”; in 
particular, a two-configuration approximation could be 

I& Is2 “S) = a,@(W 5) + a@(29 IS), (1) 

where @(ns2 1s) in this case is a single Slater determinant for the configuration lts2, 
but in general would be a linear combination of determinants. The unknown 
quantities in $ are the radial functions, P18(r) and P,,(r), and the mixing coefficients, 
a, and a, . These are to be determined such that the total energy, 

E = (4 I H I $>I<$ I cb 
is stationary. 

An expression for the energy can readily be derived if we make the following 
assumptions: 

(i) low P,,(r) P,,(r) dr = (ns I ms) = 6,, 

(ii) ale + u22 = 1. 

Then, in Slater’s [lo] notation, 

E = a12{21(ls) + P(ls, Is)) + 2u,a,G*(ls, 2s) + a22{21(2s) + Eo(2s, 2s)). 

But before the variational principle can be applied Lagrange multipliers must be 
introduced for each constraint. In our example, the functional which must remain 
stationary is 

W = E + L<ls I 1s) + hs2s<ls I 2s) + h2rzsQs I 2s) - Nq2 + 43. 

As in the single configuration approximation [lo], the requirement that 6 W = 0 
for variations in both PIa and P,,(r) leads to the MCHF equations, 

LP,,(r) = WWYls, 1s; r> Pdr) + h/4 Y*(ls, 2s; r> PBb(r)l 
+ ~lsl~ls(r) + h2,P2sW 
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and 
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where 

and 

LP,,(r) = (2/r)[Y0@s, 2s; r> P2&> + (al/a,) Y”(ls, 2s; r> P,,(r)1 
+ E2slsPls(r) + c2s2sP2.dr), 

E - Lnslanz; nsn* - n = 1,2, 

Qs2s = 4,2,/P12h E28lS = (+2>2 l 1szs . 

The boundary conditions are P&O) = 0 and P&co) = 0. The requirement that 
6 W = 0 for variations in a, and a2 leads to the secular equations: 

where H,, = 21(ns) + P(ns, ns) and 

HI2 = H,, = GO(ls, 2s). 

The MCHF equations together with the secular equations define the stationary 
energy. Note that the equations defining the radial functions depend on the mixing 
coefficients and vice versa. As a result, these two problems must be solved 
simultaneously. Note also that for small values of a2 , the equation for PJr) is 
nearly the same as that for a single configuration but that the equation for Pzs(r) 
is quite different. The dominant term is YO(ls, 2s; r) PI,(r) which originates from 
the interaction of 2s2 with ls2. 

In general, in the m-configuration approximation (which we shall denote by 
MCHFm), 

Y&W = f 4%4S), 
i=l 

where y is the label for the state and yi the i-th configuration. The unknowns are 
the radial functions, P$‘(r), which occur in the configuration state functions 
@(yiL,S), and the mixing coefficients, a, , i = 1,2,..., m. Orbitals with the same (nl) 
quantum numbers but in different configurations need not have the same radial 
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function, but in order for the energy expression to have a suitable form, it is 
convenient to assume1 

(i) lam P::(r) Ptjl(r) dr = S,,, 

(i.e., two radial functions with the same 1 dependence occurring within the same 
configuration state function are orthogonal). 

(ii) (@(~&S) ( @(rjLS)) = Sij . 

(iii) 5 Ui2 = 1. 
i=l 

Condition (ii) often will be satisfied when radial functions belonging to two 
dzferent configuration state functions are also orthogonal, but when the angular 
quantum numbers are different there is no need to introduce such a constraint. For 
example, the approximation 

$(ls2p ‘P) = a,@(ls2p ‘P) + a,@(3p34, 

where (2p ) 3p) # 0, satisfies all the above requirements. 
Once an energy expression has been obtained, the variational procedure can be 

applied as in the single configuration approximation (see Slater [lo]), resulting in 
a system of MCHF equations, one for each radial function in the approximation, 
and a system of secular equations of order m. 

In order to obtain the energy expression, angular momentum integrals for the 
energy matrix element 

must be evaluated, where His the Hamiltonian for the system. For the two-electron 
system considered here, 

where 
H=H,+H,+V 

Ha = --U/2) VW2 + Z/r,, , a = 1, 2, and V = l/rlz. 

Let us assume 

yi = (n&24), 4 < 12 9 and nl d n2 when 1, = 1,) 

yj = (n,l,n,lJ, l3 G 14, and n3 < n4 when I3 = 14, 

1 For larger atomic systems, the expression for interactions between configurations may &come 
unwieldy unless it is also assumed that a common core of electrons have the same radial function. 
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then the one-electron part of the Hamiltonian, ZZr + H, , will make a nonzero 
contribution only if II = I, and 1, = Z, and n, = n3 or n2 = n4, i.e., the two 
configurations are the same or differ only in the principal quantum number of 
one electron. Then 

Z(nZ, n’l) = -(1/2)(nlI L ) n’l) and Z(nl, nZ) = Z(d). 

The contribution from V can be obtained using Hibbert’s [l 1) program for 
evaluating angular momentum integrals. 

Given the expression for the energy, the radial functions and mixing coefficients, 
which define $, can be calculated using the program, MCHF72 [6], modified to 
allow for contributions I(&, n’l) from interactions between configurations and 
extended to include g-electrons. 

The MCHF72 program solves the MCHF problem iteratively. Given estimates 
of oi (which should at least specify the dominant component) and estimates of 
radial functions (possibly screened hydrogenic functions), the program repetitively 
improves first the radial functions then the mixing coefficients, so that both 
converge simultaneously. The iterative solution of the MCHF equations incor- 
porates procedures with improved stability [12]. The p = log(B) variable is used 
for solving the radial equation so that an equal step-size may be used throughout, 
and Numerov’s method together with a deferred difference correction [13] is used 
for approximating the radial equation. 

The numerical procedures have been checked using hydrogenic functions 
(see [6] for details). For IZ < 2, the relative errors tend to be lo-* or less. In an 
actual MCHF calculation, the self-consistency of the radial functions is restricted 
by the accuracy of the total energy. As a result, a radial function for a configuration 
which contributes very little to the total energy cannot be determined to the 
same degree of self-consistency as one which contributes significantly; in fact it 
would be pointless to attempt such accuracy. For example, Table 2 shows that in 
an MCHFII calculation for Is2 ?!? of He, the mixing coefficients for 5g2 is 
-0.001894. This calculation terminated when the last iteration lowered the energy 
by 4.0 x 1O-8, with the maximum change in PSe = 1 .O x 1O-2 and max(P,,) = 1.26; 
the change in the 5g2 mixing coefficient was 9.0 x lo+. Another indication of the 
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overall accuracy, can be obtained from a direct calculation of both the total energy 
and the Kinetic energy. In this example, 

E(Tota1) = -2.903033 1, 
&Kinetic) = 2.9030165. 

In general, as the degree of self-consistency improves, E(Kinetic) tends to approach 
E(Tota1) which changes very little. For example, an earlier calculation which 
terminated when the maximum change in Pgg was 2.5 x 1O-2, gave 

&Total) = -2.9030330, 
E(Kinetic) = 2.9029931. 

MCHF72 represents a significant improvement in accuracy over the earlier 
program 1141. 

As in single configuration calculations, difficulties tend to be associated with 
orthogonality constraints. In such cases it is better to perform a series of calcu- 
lations, each time introducing a new configuration in the order of importance. For 
example, in the calculation for the MCHF, approximation of Eq. (1), it is clear 
that a, will be at least an order of magnitude greater than a, . Then, as already 
mentioned, PI8 will be similar to that of a single configuration which provides a 
good initial estimate for the two-configuration calculation. In this way, at least 
one of a pair of orthogonal functions can be estimated reasonably accurately. 

The MCHF approach itself provides no insight or guidance to the question of 
which configurations should be included in order to obtain a reasonably accurate 
approximate wavefunction $(yLS). In fact, simply adding configurations indis- 
criminately may lead to systems of equations which do not have a unique solution 
[15]. At the same time, the computational effort increases as the square of the 
number of configurations2 and the problem rapidly can become unmanageable. 
In the next sections, a theory will be developed for two-electron systems which 
suggests a procedure for adding configurations in a manner that also reduces the 
number of configurations. 

III. EXPANSION OF THE TOTAL WAVEFUNCTION 

The exact total wavefunction can be expanded in terms of a complete basis for 
the two-electron problem. In this paper, we want to consider transformations of 

8 In a numerical calculation, the time required to improve a radial function is of the same 
order of magnitude as that for calculating an FL, G", or Rk integral. The latter increase even more 
rapidly than the square of the number of configurations. 
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the radial functions defining the basis which have the effect of reducing the number 
of terms in the expansion. In order to study such transformations we shall first 
define a basis using the notation of Shore and Menzel [16]. 

Let {&zZm~ ) e)} be a complete orthonormal set of spin-orbitals which are 
eigenfunctions of a one-electron Hamiltonian, i.e., 

The set of all possible products 

@Cab I 12) = 4@ I 1) 54 I 3, a # b, 

then form a basis for the two-electron Hilbert space, where a and b each represent 
a set of four quantum numbers, say a = {nlmp} and b = {n’l’m’p’}. But the total 
angular momentum operators, L2 and L, , the total spin operators, S2 and S, , and 
the parity operator all commute with the Hamiltonian. Hence an eigenfunction 
of H is also simultaneously an eigenfunction of these operators. Let us consider 
the LSM-coupling scheme and denote the total wave function for a state by 
~,$(n~l~n&~ yLM,SM,) where y is a seniority number. Then, an orthonormal basis 
for the state, is a set of functions 

Y(nln’1’ yLM,SM, I 12) = (r1r2)-l P&r& P,,r(r2) ( 11’ yLM,SH,) (2) 

where I + I’ has the same parity as II + I2 . Here ( II’ yLM$M,) represents the 
coupling of the momenta to yield the indicated eigenstate: electron 1 is associated 
with the first orbital, and electron 2 with the second. An antisymmetrized basis 
element will be given by 

?&dn’Z’ yLM$HJ = (1 - p12) ul(nZn’l’ yLMJHs I 12) 
= ?@Zn’l’ yLM,SH, I 12) - Y(n/n’l’ yLM,SM, ( 21), 

(3) 

where p12 is an exchange operator. The eigenstates of the angular momenta have 
the property that 

] 11’ yLM,SM,) = (- 1) N-~‘-~+~-~ ) I’1 yLM,SM,). 

For 1’ = Z, it is then easy to verify that the basis element, 

~(nln’l yLM,SM,) = (rd-l{P,drl) P&2) - (- l)z+z’-L+‘-s P,&) P,zl(r2)) 

x I I2 YLMLSM,), (4) 

is antisymmetric. In other words, the space part is symmetric when the angular and 
spin parts are antisymmetric, and vice versa. Note that these antisymmetrized 



SOLVING SCHRijDINGER’S EQUATION FOR TWO-ELECTRON SYSTEMS 509 

basis elements have not been normalized. We shall see later that, because the 
normalization factor differs for equivalent and nonequivalent electrons, this form 
simplifies the arguments. 

From now on, since the energy of our state is independent of the M, and MS 
values, we shall omit the designation of these quantum numbers. Then, expanding 
the exact wavefunction in terms of our basis we get 

where the sum is over all possible configuration (or pairs of nl quantum numbers) 
of the proper parity for which the angular and spin momenta may couple to yield 
the designated eigenstates. In order not to include a given configuration twice, an 
ordering of the {nl} quantum numbers is assumed: the inequality n’l’ > nl implies 
that the nl quantum number appears before n’l’ in the ordering. 

IV. THE 19 lS STATE 

For the 19 ls state 1 = I’ and the space part of Eq. (3) is symmetric. Upon 
substituting Eqs. (2)-(4) into (5), we get 

with an’I.nz = anl,,,tz . Let Pz(r) be the column vector of radial functions, {P,z(r)}*, 
and Atz) the matrix of coefficients. Then the inner sum of Eq. (6) may be rewritten, 
in matrix vector form, as 

$, (1 + Li> un~,n,zPndrd J’,&2) = Pz’h) -4(z+‘z(r2) (7) 

But Afz) is a symmetric matrix. Hence an orthogonal matrix 0 exists such that 
e)TA(z)O = D(I) is diagonal. Let Pz = OTPz , then Pz = Ofr, . Substituting for Pz 
in Eq. (7) we get 

PzT(rl) A’Pl(r,) = P,=(rl) U=A’“‘@@&J 

= PzT(rl) D’“‘&(,,) 

= C&‘~dr3 pnz<r2). 
n 

(8) 
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This result shows that by transforming the radial functions for a given 1, the doubly 
infinite sum in Eq. (6) can be reduced to a single infinite sum. Though the notation 
did not indicate this explicitly, there is one such orthogonal transformation for 
each I. In this case, the functions p,&) are the radial part of the natural orbitals 
defined by Lowdin [9]. 

Let @(nP IS) = (r1r2)-l p&1) ~&J ) I2 IS> which is both normalized and 
antisymmetric. Transforming each set of radial functions, so that the sum in Eq. (7) 
assumes the diagonal form of Eq. (8) we obtain the doubly infinite sum 

t&ls21S) = f 1 c cp@ (n12 ?s) 1. (9) 
I=0 n=l+l 

A systematic MCHF procedure can now be defined. Starting with I = 0, for 
each Iincrease the number of (nj2) configurations until the change in the energy AEnc 
is sufficiently small. Let the improvement associated with this value of I be AP. 
Increase I until AZP is also sufficiently small. This procedure was applied to the 
ls2 IS state of helium using a numerical MCHF approach described in the earlier 
section. No fixed criterion for “sufficiently small” was used: instead configurations 
were introduced in turn until n = 4. Table 1 shows the convergence of the process, 
where at each stage one new configuration is added to the approximation in an 
accumulative manner, Note that for a given n, the largest AE,,, is associated with 
the largest 1. It is clear that the most important configuration omitted from the 

TABLE 1 

Convergence of an MCHF Procedure for ls2 ‘S of He 

AEn, 
m Configuration Et,t,l 

n=2 n=3 n==4 n=5 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

exlL~t[21 E 
E - Emat 

19 
+2s’ 
+3s2 
+4s2 
$2P2 
+3p2 
+4p= 
+3d2 
+4d2 
f4f’ 
+5‘? 

-2.861680 
-2.877997 
-2.878871 
-2.878990 
-2.898554 
-2.900150 
-2.900399 
-2.902179 
-2.902523 
-2.902909 
-2.903033 
-2.903724 

0.000691 

0.016317 
0.000874 

0.000119 
0.019564 

0.001599 
0.000249 

0.001780 
0.000344 
0.000386 

0.000124 
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systematic study is 5g2: the latter was then added to determine the extent of its 
contribution. The value of 2.902909 for the ten configuration approximation is in 
good agreement with that of -2.90289 obtained by Sabelli and Hinze [17] for the 
same configurations. Their paper includes a detailed analysis of this MCHF 
approximation. 

In Table 2, the mixing coefficients, dt’ are given, Note that for a particular I, 
the coefficients all have the same sign and that the coefficient for 5g2 is appreciable. 

TABLE 2 
Mixing Coefficients dh” for 19 ‘S of He for the 

Eleven Configuration Approximation 

Configuration d”’ ” 

19 0.995967 
2sz -0.061750 
3s2 -0.007847 
4f -0.001707 
2P2 0.062046 
3PZ 0.011044 
4P2 0.002691 
3dZ -0.012793 
4dZ -0.003467 
4f2 0.004103 
58 -0.001894 

V. THE ls2s1S STATE 

The symmetry properties of 1~2.3 3 are exactly the same as those of ls2 lS and 
so the expansion for #(ls2s ‘S) has the same form as Eq. (6): orthogonal transfor- 
mations exist which reduce it to the diagonal form of Eq. (9). However, in this 
form no single configuration will dominate. In the original expansion of Eq. (6) 
we would expect the coefficients a ls2s = u2918 to dominate. When the matrix for 
a single configuration approximation, 

0 1 
A = alsZs 1 

( ) 
o , 

is diagonalized, by the rotations, 
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we find 

In other words, the diagonal entries have opposite sign. This form was first 
observed by Seaton [18] but numerical attempts at computing a function of this 
form failed, possibly because the stationary solution is numerically unstable. 
Certainly there is considerable cancellation in the calculation of the total energy. 

Intuitively, we would like to retain the 1~2s 9 configuration since this represents 
a dominant component for the state. It is easy to show that, as long as two diagonal 
entries have opposite sign, say dl and -d, , that an orthogonal matrix exists 
such that 

In other words an orthogonal transformation of pl:,s and p2* exists which allows us 
to replace one “diagonal” configuration by a “nondiagonal” one so that, 

$h(ls2s 1s) = c~~@(ls2 IS) + c~)@(ls2s 5) 

+ f C:),@(ns2 1s) + f 
I 

f c~&d2 l&s) . 
t (11) n=3 I=1 n=z+1 

TABLE 3 
Convergence of an MCHF Procedure for 1~2s ‘5’ for He 

Configuration 
AEn, 

Etot.1 
it=1 n=2 n=3 ?I=4 

ls2s -2.169854 
-tW -2.143474 
+3s2 -2.144138 
+4s* -2.144188 
+2p2 -2.145235 
+3P" -2.145645 
+4p2 -2.145736 
+3d* -2.145773 
+4de -2.145866 
+4fz -2.145873 

-2.145974 
0.000101 

-0.026380 
0.000664 

o.oooo5o 
0.001047 

0.000410 
O.WOO81 

o.OOoO37 
o.OoOO93 
o.OOoOO7 
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The mixing coefficients cg: are directly related to the @‘s. An earlier correlation 
study for 1~2s ?S [15] has shown that the MCHF approximation given by the first 
two configurations is equivalent to a nonorthogonal Hartree-Fock approximation. 
Furthermore, of the set of possible rotations, this approximation has the property 
of minimizing the energy of the ion. 

An MCHF procedure for finding solutions of the form given by Eq. (11) was 
applied to He: results showing convergence of the energy are given in Table 3. 
The changes LIE,~ do not appear to vary as systematically as those for ls2. The 
mixing coefficients are given in Table 4. It is evident that there are still changes of 

TABLE 4 

Mixing Coefficients c$, for 1~2s IS of He 

Configuration 

ls2s 
1st 
3s 
4s 

2P2 
3P2 
4P2 
3dP 
4dZ 

4fe 

$1) 
““’ 

0.993636 
0.109762 

-0.013178 
-0.001931 

0.013711 
-0.015810 

0.002317 
0.003615 

-0.002252 
-0.001341 

sign in the mixing coefficients for a given I. In particular the coefficients of 2~2 
and 3~2, as well as 3d2 and 4d2 have opposite sign. Transformations such as those of 
Eq. (9) could be employed to replace these configurations by 2p2, 2p3p and 3d2, 
3d4d, respectively. The earlier study in which 4s2, 4pz, and 4f 2 were omitted, had 
proceeded in this fashion. 

VI. THE ls2s3S STATE 

From Eq. (3) it follows that the space part of the total wavefunction for the 
1~2s 3S state is now antisymmetric. As a result, the expansion of the exact wave- 
function given in Eq. (5) becomes 

$(ls2s 3S) = (r1r2)-l 1 
1 

C kdlPndrl) Pdl(r2) I h’l 3s> 
1 n.n’ t Tl#Fk 
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where now an’z,nl = -anl,n’l. Thus the matrix of coefficients, AL = (QJJ is 
antisymmetric. 

Consider G = iA( This matrix is Hermitian, hence there exists a unitary 
matrix U such that 

U+GU = D 

where D is diagonal and real. Consequently, 

AU = U(-i)D 

which implies that the eigenvalues of A are pure imaginary. But A is real, and so 
the eigenvalues must occur in complex conjugate pairs. Let ih, , -ih, be one such 
pair. It is easy to verify that if U, is an eigenvector for the first, Ur*, is the eigen- 
vector for the second. From the orthogonality of eigenvectors of hermitian 
matrices, it follows that UITUI = 0. Now let U, = X, - iY, , then 

AX, = h,Y, 
AY, = --x,X, . 

Also XITY, = 0 and XITX1 = YI’YI since U1rUI = 0. As a result the real matrix 
of vectors 

B = [Xl, Y,, X, > Y, ,...I 

defines an orthogonal transformation of the radial functions such that 

P, = BP, 

and 

where the notation dn = 2 is used to indicate that n increments by 2. Hence the 
expansion for #( 1~2s 3s> becomes 

z-0 m-z+1 
n'--n+1 

An-2 

Table 5 shows the convergence of an MCHF procedure for He based on this 
form. Notice that radial correlation is exceedingly small and that the addition of 
only four configurations has accounted for 98.9 ‘A of the correlation energy, even 
though the correlation energv was small to begin with. The mixing coefficients are 
given in Table 6. 
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TABLE 5 
Convergence of an MCHF Procedure for 1~2s 3S of He 

Configuration 
A&t,,*, 

E tota, 
n=2 n=3 n=4 
n’ = 3 n’ = 4 n’ = 5 

ls2s -2.174251 
+ 3s4s -2.174264 0.000014 
+2~3~ -2.175166 0.000902 
+4P5P -2.175171 omOOO5 
+3d4d -2.175218 o.m47 

E,,,,J21 -2.175229 
E - Eexw 0.000011 

The calculations for this case were particularly simple. Because the space part 
is antisymmetric, any orthogonal transformation of a pair of radial functions pml , 
P,,, into a new basis, leaves the configuration state function @(nln’l %) unchanged. 
As in the single configuration approximation, one can then select that basis for 
which the Lagrange multiplier associated with the orthogonality constraint is zero. 

TABLE 6 
Mixing Coefficients I$,!, for 1~2s 3S of He 

Configuration e( 11 93% 

ls2s 0.999812 
3s4s -0.001398 
2~3~ 0.019055 
4P5P -0.000689 
3d4d 0.003230 

VII. THE ls2p lr3P STATES 

In considering transformations of the radial functions for this case it is necessary 
to restrict the transformation to the set of functions with a particular 1. In the case 
of 1~2s lJP states, the expansion must have the form 
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where I + 1’ is odd and I’ - 1 = I. Here we have assumed arbitrarily that I < I’. 
As a result the space part contains products of radial functions with different 1. 
For this reason, it is more convenient to deal with a form in which the space part 
has not been antisymmetrized. 

Let us rewrite Eq. (13). Let I’ = 1-t 1, then 

Now let P, = {P,l}’ and P1* = {P,+*at}’ be column vectors of radial functions and 
define ArE+z’) to be the matrix of coefhcients, 

A(z+t’) = (1+1’) (GLn’ 1. 

Then there exist two orthogonal matrices 0, and 0, [19] such that 

where D is a diagonal matrix. Let P, = OITP1 and P,, = BZTP, . Then 

c a:,~‘)P,&,) P,&,) = PIT(r,) A(z+z’)PI+2) 
n.n’ 

= &=(I~) D&Q& 

But the first entry in fr, is p,,, where n = I + 1 and the first in P,r is PnrlT where 
n’ = n + 1 since I’ = I+ 1. As a result 

where n’ = n + 1 and I’ = I + 1. The expansion for #(ls2p ‘*“P) then assumes 
the form 

$(lS 2p ‘,“P) = f c cy”@(nln’l’ 1*3P). 
ZIO n--l+1 

However, it is important to remember how this form was arrived at. Unhke the 
previous 1s cases, the vector P, occurred (in general) in two sums on 1. The 
orthogonal transformations which diagonalize Arr+“) in fact depend on (I + I’) 
and hence there really will be two sets of basis functions, pil and Pl’. Within each 
set the radial functions must be orthogonal but they need not be orthogonal 
between sets. This is the primary difference between the transformations considered 
here and Lowdin’s natural orbitals. 

The convergence of an MCHF procedure based on this form is shown in Table 7 
for 1~2~ lP, and Table 9 for 1~2~ 3P. Table 7 also shows the tremendous advantage 
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TABLE I 

Convergence of an MCHF Procedure for 1.~2~ ‘P of He 

Configurations 
AEnz,,iz~ 

E tot?.1 

n=2 ?I=3 
n’ = 3 n’ = 4 

ls2p ‘p -2.122464 
+2s3p -2.122587 0.000123 
+2p’3d -2.123653 0.001066 
W4 (-2.122708) (0.000121) 
+3d’4j -2.123766 0.000113 

E exactPI -2.123843 
E - Eexsct 0.000077 

TABLE 8 

Mixing Coefficients c$?‘) for ls2p ‘p of He 

Configuration 

ls2p 0.999154 
2s3p 0.007411 
2p’3d 0.020392 
3d’4f 0.004705 

TABLE 9 

Convergence of an MCHF Procedure for I s2p “p of He 

Configuration E tota, 

ls2p -2.131437 
+2s3p -2.132337 
+3s4p -2.132367 
+2p’3d -2.133054 
+3d’4f -2.133086 

E exsm -2.133164 
E - Emwt 0.000078 

n=2 n=3 
n’ = 3 n’ = 4 

O.OOO9OO 
o.OoOO3o 

0.000687 
0.000032 

58111314-5 
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TABLE 10 
Mixing Coefficients c$“’ for ls2p “p of He 

Configuration 
___~ _I- __~ 

ls2p 
2s3p 
3s4p 
2p’3d 
3d’4f 

ciI+I’l Ml’ 

0.999639 
--0.020943 
-0.002241 

0.016467 
-0.002565 

that has been gained by not restricting the 2p radial function for Qi(ls2p) and 
@(2P3d) to be the same. When they are the same, the improvement in the correlation 
energy, AE2s3d , is 0.000121 whereas for different 2p radial functions it is 0.001066. 
This is the largest contribution of any configuration. Of course, the number of 
radial functions which have to be computed increases when the two are not the 
same but the amount of computation tends to increase linearly with the number of 
radial functions and as the square of the number of configurations. In addition, 
no additional terms enter into the energy expression when Pz,, is not orthogonal 
to PsD and so the improvement in the correlation energy has been achieved with 
only a small increase in the amount of computation. The restricted calculation was 
not repeated for ls2p 3P but the effects are likely to be similar. The mixing coeffi- 
cients for Is2P lP and 3P are given in Tables 8 and 10, respectively. 

VIII. GENERALIZATION AND CONCLUSION 

The four states-ls2 ?!S, 1~2s ?S’, Is2sQ, Is2p IP (or 3P)-illustrate the four 
different cases which may arise in the study of two electron states. In general, the 
exact wavefunction may be expressed as a sum over all possible coupling schemes. 
With each coupling scheme is associated a doubly infinite sum over all possible 
pairs of principle quantum numbers n and n’. When the angular coupling is such 
that 1’ # I, an analysis like the one for ls2p lesP shows that orthogonal transfor- 
mations of the radial basis exist which reduce this double sum to a single sum, 
though it may then be necessary to have more than one basis for a given 1. When 
1’ = I, two cases may occur: either the space part is symmetric or antisymmetric. 
In either case, orthogonal transformations again exist which reduce the double sum 
to a single sum. Finally, as in 1~2s IS, when I’ = Z, the space part is symmetric, 
and the diagonal form contains two configurations for which the mixing coefficients 
are nearly equal but of opposite sign, then one of the “diagonal” configurations 
can be replaced by a “nondiagonal” one. These transformations are useful in 
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determining a “reduced” functional form for the exact wavefunction which 
contains a minimum of configurations. 

An MCHF procedure can now be defined for computing such two-electron 
correlated functions which considers each coupling scheme in turn. For each 
coupling scheme configurations are added in accordance with the reduced form, 
and the radial functions and mixing coefficients computed until the change in 
energy (or the mixing coefficients for the added configuration) is sufficiently small. 

For a many-electron atomic system with N > 2 electrons, the exact total wave- 
function is again a sum over all possible coupling schemes. But with each spin- 
angular factor there are now N sums over all possible values of the N principle 
quantum numbers n, , n, ,..., nN . By keeping all but two of the indices fixed, and 
possibly recoupling the spin-angular factor, the double sum on the remaining two 
indices may be reduced to a single sum. The sum over all possible couplings of this 
pair of electrons, the coupling of the remaining N - 2 electrons remaining 
unchanged, defines a pair correlation function, similar in concept to the pair 
correlation functions which form the basis of Sinanoglu’s extremely successful 
many-electron theory (for a recent review, see 1201). Pair correlated functions have 
been used, for example, by Byron and Joachain [21] in the study of Be, but they 
restricted the coupling of electron pairs to being of IS type. 

In an N-electron system the number of pair correlated functions rapidly increases. 
Since an MCHF approach to correlation in effect expresses the correlated function 
as a linear combination of configurations, it is highly desirable to minimize the 
number of such configurations. Table 11 presents some data on the efficiency of 
representation. Ideally one would like to compare the various methods at the same 
level of accuracy. This was not possible, and so the accuracy is included in the table. 
For the perimetric coordinate expansion (PC) method of Pekeris et el. [2, 31, m is 
the number of terms in their sum. The CI results are those of Green et al. [22] and 
m refers to the number of configurations when each radial function is an optimized 
Slater orbital. The multiconfiguration frozen core (MCFC) results of Calvert and 
Davison [23] are in a sense similar to the MCHF ones, except that in each confrgu- 
ration, one of the radial functions is part of a “frozen core” and the second is 
determined variationally. Thus electrons are treated in a nonequivalent manner and 
several radial functions with the same nl may be present. In both MCHF and 
MCFC, m refers to the number of configurations. 

For lP or 3P, Table 11 shows immediately that with a similar set of configurations 
the MCHF results are more accurate than the MCFC ones. For ls2 IS, the MCFC 
approach has an advantage since the single configuration, nonequivalent approx- 
imation has a lower energy than the Hartree-Fock one. If in Table 11, we take the 
energy of the 8-configuration approximation, and subtract the contributions LIE,, 
for 3sZ, 4s2, 4p2, we get an approximate energy for the same 5configuration 
approximation with (E - Eexact) N 0.00278. This result is in agreement with that 



520 FISCHER 

TABLE I1 

A comparison of the Number of Terms m in a Pair 
Correlated Function for Various Methods 

PC - perimetric co-ordinate expansion (Pekeris [2,3]) 
CI - configuration interaction 

(Slater orbitals) (Green et al [22]) 
MCHF - multi-configuration Hartree-Fock 
MCFC - multi-configuration frozen core (Calvert and Davison [23]) 

1. wls 

(i) PC 
(ii) CI 
(iii) MCHF 

(iv) MCFC 

2. ls2p'P 
(i) PC 

(ii) CI 
(iii) MCHF 
(iv) MCFC 

3. ls2p3p 
(i) PC 
(ii) CI 
(iii) MCHF 
(iv) MCFC 

m E exsct --E 
95 o.ooooo1 
50 o.ooo34 
10 0.00081 
11 0.00069 
5 0.00339 

20 0.000049 
42 0.000062 
4 0.000077 
5 o.ooo1o 

20 0.000052 
42 0.000036 

5 0.000078 
5 o.ooo12 

obtained by subtracting A!?,, from Sabelli and Hinze’s 6-configuration result to 
yield (E - Eexact) ‘v 0.000273 for the 5-configuration approximation. It is clear 
that MCHF has the faster rate of convergence and that by the time five configu- 
rations have been added, it is the more accurate approximation. 

The CI results of Green et al. are consistently more accurate than the MCHF 
ones presented here. But for ls2 IS, the 5g2 W contribution alone accounts for 
about 25 ‘A of the difference between the IO-configuration MCHF approximation 
and the CI result. Because of the simple form of the radial functions, the CI results 
are bound to require far more configurations. 

For Is2 ?S, the Pekeris result with 95 terms is too accurate for a reasonable 
comparison. But for IP and sP, the 20 term result has an error of roughly half of 
the 4 and 5 configuration MCHF one, respectively. 

The MCHF method has the advantage that it retains the simple configuration 
concept of an atom and, at the same time can represent the pair correlation function 
efficiently with a relatively few configurations. It is not certain that the high accuracy 
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of Pekeris et al. can be achieved with present numerical methods. On the otherhand 
an MCHF pair correlation study of the outer shell of, say, 19 29 2ps 3s nl LS, can 
be performed as readily as the two electron study reported here. 

ACKNOWLEDGMENTS 

Research support from the National Research Council of Canada grant No. A-3136 is grate- 
fully acknowledged. 

REFERENCES 

1. C. L. Pe~e~ls, Phys. Rev. 112 (1958), 1649; C. L. Pe~erus, Phys. Rev. 115 (1959), 1216; 
C. L. PEKERIS, Phys. Rev. 126 (1962), 143; C. L. PEKERIS, Phys. Rev. 127 (1962), 509. 

2. C. L. ~EKERIS, Phys. Rev. 126 (1962), 1470. 
3. B. SCHIFF, H. LIFSON, C. L. PEKERIS, AND P. RABINOWITZ, Phys. Rev. A 140 (1965), 1104. 
4. Y. ACCAD, C. L. PEKERIS, AND B. SCHIFF, Phys. Rev. A 4 (1971), 516. 
5. D. R. HARTREE, The Calculation of Atomic Structures, Wiley, New York, 1957. 
6. C. FROESE FISCHER, Computer Phys. Comm. 4 (1972), 107. 
7. D. R. HARTREE, W. HARTREE, AND B. SWIRLITS, Phil. Trans. Royal Sot. (London) A 238 

(1939), 229. 
8. J. HINZE AND C. C. J. ROOTHAAN, Progr. of Theoret. Physics, Suppl. 40 (1967), 37. 
9. P.-O. IAWDIN, Phys. Rev. 97 (1955), 1474. 

10. J. C. SLATER, “Quantum Theory of Atomic Structure,” Vol. II, McGraw-Hill, New York, 
1960. 

11. A. HIBBERT, Comp. Phys. Comm. 2 (1971), 180. 
12. C. FROE~E FISCHER, J. Comp. Phys. 10 (1972), 211. 
13. C. FROE~E FISCHER, Comp. Phys. Comm. 2 (1971), 124. 
14. C. FROE~E FISCHER, Comp. Phys. Comm. 1(1969), 151. 
15. C. FROESE FISCHER, Canad. J. Phys. 51 (1973), 1238. 
16. B. W. SHORE AND D. MENZEL, “Principles of Atomic Spectra,” Wiley, New York, 1968. 
17. N. SABELLI AND J. HINZE, J. Chem. Phys. 50 (1969), 684. 
18. M. SEATON, Comments on Atomic and Molecular Physics 1 (1970), 177. 
19. G. E. FORSYTHE AND C. B. MOLER, “Computer Solution of Linear Algebraic Systems,” 

Prentice-Hall, Englewood Cliffs, N.J., 1967. 
20. 0. SINANOGLU, “New Directions in Atomic Phys.,” Vol. 1, (E. U. Condon and 0. Sinanoglu, 

Eds.), Yale Univ. Press, New Haven, Conn., 1972. 
21. F. W. BYRON, JR., AND C. J. JOACIUIN, Phys. Rev. 157 (1967), 7. 
22. L. C. GREEN, E. K. KOLCIDN, AM) N. C. JOHNSON, Phys. Rev. A 139 (1965), 373. 
23. J. MCI. CALVERT AND W. D. DAVISON, J. Phys. B: Atom. Molec. Phvs. 4 (1971), 314. 


